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Abstract
Background: To identify potential causative mutations in SLC2A9 and SLC22A12 
that lead to hypouricemia or hyperuricemia (HUA).
Methods: Targeted resequencing of whole exon regions of SLC2A9 and SLC22A12 
was performed in three cohorts of 31 hypouricemia, 288 HUA and 280 normal 
controls.
Results: A total of 84 high‐quality variants were identified in these three cohorts. 
Eighteen variants were nonsynonymous or in splicing region, and then included in 
the following association analysis. For common variants, no significant effects on hy-
pouricemia or HUA were identified. For rare variants, six single nucleotide variations 
(SNVs) p.T21I and p.G13D in SLC2A9, p.W50fs, p.Q382L, p.V547L and p.E458K 
in SLC22A12, occurred in totally six hypouricemia subjects and were absent in HUA 
and normal controls. Allelic and genotypic frequency distributions of the six SNVs 
differed significantly between the hypouricemia and normal controls even after mul-
tiple testing correction, and p.G13D in SLC2A9 and p.V547L in SLC22A12 were 
newly reported. All these mutations had no significant effects on HUA susceptibility, 
while the gene‐based analyses substantiated the significant results on hypouricemia.
Conclusion: Our study first presents a comprehensive mutation spectrum of hy-
pouricemia in a large Chinese cohort.
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1 |  INTRODUCTION

Hypouricemia, conventionally defined as serum uric acid 
(SUA) concentration ≤2 mg/dl (Bordier et al., 2004), is not 
widely recognized in clinical practice. In fact, SUA performs 
the important physiological function of oxidative defense 
in human body, which is related to prolonged longevity and 
decreased age‐specific cancer incidence (Ames, Cathcart, 
Schwiers, & Hochstein, 1981). Although the accurate bio-
logical mechanisms remain unknown, growing researches 
emerge to provide evidence that lower SUA leads to varied 
pathophysiological conditions: hypouricemia has a higher in-
cidence of acute kidney injuries (AKI) (Ichida et al., 2004), 
urolithiasis (Ichida et al., 2004), and composite cardiovascu-
lar events (Essex et al., 2017), and it is also associated with 
higher all‐cause mortality in hemodialysis patients (Park 
et al., 2017), as well as a risk factor of neurodegeneration 
progression and a potential indicator of malnutrition (Tana, 
Ticinesi, Prati, & Nouvenne, 2018).

Hypouricemia is mainly caused by genetic defects of im-
paired renal tubular reabsorption (Enomoto et al., 2002; 
Matsuo et al., 2008) and/or reduced UA production (Sebesta & 
Stiburkova, 2018). Among them, hereditary renal hypouricemia 
(hRHUC) is a major type due to mutations of urate transporter 
URAT1 (encoded by SLC22A12 [OMIM *607096] and classi-
fied as hRHUC 1 [OMIM #220150]) and URATv1 (encoded by 
SLC2A9 [OMIM *606142] and classified as hRHUC 2 [OMIM 
#612076]) and is prone to exercise‐induced acute renal failure 
(EIARF) and urolithiasis especially in men (Ichida et al., 2008; 
Kaito et al., 2013). Recently, hRHUC patients complicated with 
chronic renal failure have been reported (Aksoy, Koyun, Ichida, 
Comak, & Akman, 2018a, 2018b; Claverie‐Martin et al., 2018) 
and the correlation of hypouricemia with reduced kidney function 
was also established in a large‐scale cross‐sectional population‐
based study (Wakasugi et al., 2015). Therefore, recognizing peo-
ple with very low SUA and providing prompt medical guidance 
is of critical importance to avoid renal adverse events (Bhasin et 
al., 2014). With the popularity of genetic testing methods, more 
hRHUC patients have been reported. Notably, most published 
literatures on hypouricemia focused on case report or case se-
rials (Zhou et al., 2018), which lack essential statistics through 
comparison with normal controls and may result in false reports 
of causative mutations to hypouricemia, especially in the Han 
Chinese population. Moreover, most reported hRHUC patients 
were mainly diagnosed using traditional Sanger sequencing 

(Kim et al., 2015; Windpessl, Ritelli, Wallner, & Colombi, 
2016) or locus‐specific polymerase chain reaction (PCR) reac-
tion (Takagi, Omae, Makanga, Kawahara, & Inazu, 2013) for 
one gene SLC22A12 or SLC2A9. Although sanger sequencing 
is the golden standard for DNA detection but is time‐consuming 
and laborious (Sommen & Van Camp, 2013), next‐generation 
sequencing (NGS) based targeted resequencing has evolved 
to correctly diagnose genetic diseases in a more cost‐effective 
and time‐saving mode (Adams & Eng, 2018; Sommen & Van 
Camp, 2013). Using the NGS method and incorporating the par-
ent‐offspring trios, we successfully confirmed a hRHUC patient 
cosegregated with novel compound heterozygous mutations in 
SLC22A12 (Zhou et al., 2018).

In this study, we aim to detect the mutations in three 
cohorts of hypouricemia, hyeruricemia (HUA) and normal 
controls using an amplicon‐targeted NGS method for both 
SLC22A12 and SLC2A9, and conduct statistical analyses to 
further corroborate the mutations with real hypouricemia or 
HUA susceptibility in the Han Chinese population.

2 |  MATERIALS AND METHODS

2.1 | Ethical compliance
This study was approved by the local ethics committee and 
conformed to the principles of the Declaration of Helsinki 
(World Medical, 2013). All recruited participants signed in-
formed consent for biomedical and genetic analysis.

2.2 | Study participants for sequencing
To detect true SLC22A12/SLC2A9 mutations that lead to 
hypouricemia, we sequenced three cohorts of hypourice-
mia, HUA and normal controls in order to perform com-
parative analyses. Thirty‐one hypouricemia, 280 normal 
controls and 288 long‐term HUA individuals who had 
not yet developed gout were recruited from Qingdao Key 
Laboratory of Gout. Demographic and clinical indices 
were retrospectively reviewed. Reference ranges of SUA: 
children under 15  years of age and adult females, 2.0–
5.7  mg/dl (120–342  µmol/L); adult males, 2.0–7.0  mg/dl 
(120–420 µmol/L) (Stiburkova et al., 2013). Hypouricemia 
was defined as SUA ≤2 mg/dl (120 µmol/L) irrespective 
of sex (Claverie‐Martin et al., 2018; Gibson, Sims, & 
Jimenez, 1976; Ichida et al., 2004). HUA was defined as 
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SUA >7 mg/dl (420 µmol/L). In normal controls, SUA was 
confined to 3–6  mg/dl (180–360  µmol/L). Unfortunately, 
we could not get past histories such as onset of AKI and 
urolithiasis and types of medications that may influence 
SUA concentrations.

2.3 | Amplicon targeted resequencing
Genomic DNA was prepared using LifeFeng Genomic 
DNA Purification Kit (Lifefeng Biotech Co., Ltd., Shanghai, 
China) and quality controlled using a NanoDrop 1000 
Spectrophotometer (Thermo Scientific, United States), as de-
scribed (Li et al., 2015). Primers along with standard Illumina 
PE adapters were designed to generate 46 amplicons harboring 

all exons and partial un‐translated regions (UTRs) of the 
SLC22A12 and SLC2A9. The primer sequences and targeted 
regions can be seen in Data S2. Sequence libraries were pre-
pared in a two‐staged PCR process. The PCR reagents and 
procedures were designed and supported by the Shanghai 
DYnastyGene Company, according to the manual. Each sam-
ple was then ligated with unique 8 bp index for sample‐specific 
barcoding, which allowed all samples to be mixed for library 
purification and sequencing in a single run. The size distribu-
tion of fragments was determined using 2100 Bioanalyzer and 
the High Sensitivity DNA kit (Agilent Technologies, United 
States). The well‐constructed library was then sequenced 
as 150  bp paired‐end reads on an Illumina Xten platform 
(Illumina, United States).

T A B L E  1  The demographic and clinical indices among hypouricemia (1), normal control (2) and HUA (3) groups

Indices (1) (2) (3) (1) vs. (2) p (3) vs. (2) p

Male (%) 54.8 50.7 52.8 0.663 0.623

Age (years) 53.00 ± 21.12 59.27 ± 14.25 58.82 ± 17.20 0.116 0.742

WC (cm) 86.64 ± 13.93 92.09 ± 8.45 93.39 ± 10.34 0.086 0.161

HC (cm) 96.93 ± 8.80 102.32 ± 6.56 102.82 ± 8.59 0.001 0.507

BMI (kg/m2) 23.74 ± 3.94 25.31 ± 3.16 26.27 ± 3.85 0.05 0.003

SP (mmHg) 130.12 ± 20.64 138.57 ± 19.02 139.60 ± 20.95 0.033 0.564

DP (mmHg) 80.65 ± 11.19 82.98 ± 11.57 86.50 ± 12.22 0.328 0.001

Glucose (mmol/L) 5.66 ± 1.89 6.24 ± 2.25 6.03 ± 1.72 0.175 0.241

Triglyceride 
(mmol/L)

1.84 ± 1.66 1.52 ± 0.95 2.28 ± 1.94 0.296 <0.001

Cholesterol (mmol/L) 5.20 ± 1.03 5.87 ± 1.12 5.38 ± 1.09 0.002 <0.001

BUN (mmol/L) 5.56 ± 1.69 5.57 ± 1.21 6.05 ± 2.03 0.966 0.002

Creatinine (μmol/L) 68.10 ± 21.01 67.54 ± 15.24 85.44 ± 23.91 0.888 <0.001

SUA (mg/dl) 1.18 ± 0.62 4.47 ± 0.84 7.93 ± 0.96 <0.001 <0.001

Note: To convert SUA in mg/dL to μmol/L, multiply by 60.
Abbreviations: BMI, Body mass index; BUN, Blood urea nitrogen; HC, DP, Diastolic pressure; Hip circumference; HUA, hypouricemia or hyperuricemia; SP, Systolic 
pressure; SUA, Serum uric acid; WC, Waist circumference.
p < 0.05 as statistical significance and significant p‐values in bold.

F I G U R E  1  Frequency distribution of hypouricemia according to SUA level. Two SUA sections were concentrated in hypouricemia 
frequency with the first at 0.3–1.0 mg/dl and the second at 1.7–2.0 mg/dl. SUA, serum uric acid
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T A B L E  2  Allele and genotype distributions among hypouricemia (1), normal control (2) and hyperuricemia (3) groups

CHR BP Variants Allele and genotype (1) (2) (3) (1) vs. (2) OR (1) vs. (2) p (3) vs. (2) OR (3) vs. (2) p HWE in (2) Novel or not

chr4 9909923 SLC2A9: c.G1049A/p.P350L G 45(0.726) 402(0.718) 409(0.710) 0.96 0.8949 1.039 0.7715 0.3318 rs2280205

      A 17(0.274) 158(0.282) 167(0.290) 0.53 ~ 1.73   0.80 ~ 1.34      

      G/G 15(0.484) 141(0.504) 134(0.465)   0.6811   0.2368    

      G/A 15(0.484) 120(0.429) 141(0.490)            

      A/A 1(0.032) 19(0.068) 13(0.045)            

chr4 9922167 SLC2A9: c.C844T/ p.V282I C 59(0.952) 552(0.986) 570(0.990) 3.51 0.0533 0.73 0.5546 0.8084 rs16890979

      T 3(0.048) 8(0.014) 6(0.010) 0.91 ~ 13.59   0.25 ~ 2.11      

      C/C 29(0.935) 272(0.971) 282(0.979)   0.0107   0.5521    

      C/T 1(0.032) 8(0.029) 6(0.021)            

      T/T 1(0.032) 0(0.000) 0(0.000)            

chr4 10020615 SLC2A9: c.A233G/p.V78A A 62(1.000) 559(0.998) 575(0.998) — 0.7391 0.97 0.9841 0.9761 rs907584363

      G 0(0.000) 1(0.002) 1(0.002)     0.06 ~ 15.58      

      A/A 31(1.000) 279(0.996) 287(0.997)   0.7389   0.9841    

      A/G 0(0.000) 1(0.004) 1(0.003)            

chr4 10020618 SLC2A9: c.A230C/p.V77G A 62(1.000) 560(1.000) 575(0.998) — — — 0.324 1 rs183263293

      C 0(0.000) 0(0.000) 1(0.002)            

      A/A 31(1.000) 280(1.000) 287(0.997)   —   0.3237    

      A/C 0(0.000) 0(0.000) 1(0.003)            

chr4 10022981 SLC2A9: c.C73T/p.G25R C 35(0.565) 277(0.495) 288(0.500) 0.76 0.2964 0.30 0.8567 0.9064 rs2276961

      T 27(0.435) 283(0.505) 288(0.500) 0.45 ~ 1.28   0.78 ~ 1.24      

      C/C 11(0.355) 69(0.246) 63(0.219)   0.4227   0.2839    

      C/T 13(0.419) 139(0.496) 162(0.562)            

      T/T 7(0.226) 72(0.257) 63(0.219)            

chr4 10022992 SLC2A9: c.G62A/p.T21I G 61(0.984) 560(1.000) 576(1.000) — 0.0026 — — 1 rs748372830

      A 1(0.016) 0(0.000) 0(0.000)   　 　 　 　  

      A/G 1(0.032) 0(0.000) 0(0.000)   0.0026 　 — 　  

      G/G 30(0.968) 280(1.000) 288(1.000)   　 　 　 　  

chr4 10023016 SLC2A9: c.C38T/p.G13D C 61(0.984) 560(1.000) 576(1.000) — 0.0026 — — 1 Novel

      T 1(0.016) 0(0.000) 0(0.000)   　 　 　 　  

      C/C 30(0.968) 280(1.000) 288(1.000)   0.0026 　 — 　  

      C/T 1(0.032) 0(0.000) 0(0.000)   　 　 　 　  

chr4 10027542 SLC2A9: c.C49T/p.A17T a C 58(0.935) 519(0.927) 533(0.925) 0.87 0.8019 1.02 0.9262 0.6591 rs6820230

      T 4(0.065) 41(0.073) 43(0.075) 0.30 ~ 2.52   0.65 ~ 1.59      

      C/C 27(0.871) 240(0.857) 246(0.854)   0.9333   0.9943    

      C/T 4(0.129) 39(0.139) 41(0.142)            

      T/T 0(0.000) 1(0.004) 1(0.003)            

chr11 64359297 SLC22A12: c.G269A/p.
R90H

G 62(1.000) 558(0.996) 576(1.000) — 0.6374 — 0.1512 0.9522 rs121907896

      A 0(0.000) 2(0.004) 0(0.000)            

      G/G 31(1.000) 278(0.993) 288(1.000)   0.6369   0.1508    

      G/A 0(0.000) 2(0.007) 0(0.000)            

chr11 64360303 SLC22A12: c.A455G/p.
Y152C

A 62(1.000) 559(0.998) 576(1.000) — 0.7391 — 0.3103 0.9761 Novel

      G 0(0.000) 1(0.002) 0(0.000)            

(Continues)



   | 5 of 14ZHOU et al.

T A B L E  2  Allele and genotype distributions among hypouricemia (1), normal control (2) and hyperuricemia (3) groups

CHR BP Variants Allele and genotype (1) (2) (3) (1) vs. (2) OR (1) vs. (2) p (3) vs. (2) OR (3) vs. (2) p HWE in (2) Novel or not

chr4 9909923 SLC2A9: c.G1049A/p.P350L G 45(0.726) 402(0.718) 409(0.710) 0.96 0.8949 1.039 0.7715 0.3318 rs2280205

      A 17(0.274) 158(0.282) 167(0.290) 0.53 ~ 1.73   0.80 ~ 1.34      

      G/G 15(0.484) 141(0.504) 134(0.465)   0.6811   0.2368    

      G/A 15(0.484) 120(0.429) 141(0.490)            

      A/A 1(0.032) 19(0.068) 13(0.045)            

chr4 9922167 SLC2A9: c.C844T/ p.V282I C 59(0.952) 552(0.986) 570(0.990) 3.51 0.0533 0.73 0.5546 0.8084 rs16890979

      T 3(0.048) 8(0.014) 6(0.010) 0.91 ~ 13.59   0.25 ~ 2.11      

      C/C 29(0.935) 272(0.971) 282(0.979)   0.0107   0.5521    

      C/T 1(0.032) 8(0.029) 6(0.021)            

      T/T 1(0.032) 0(0.000) 0(0.000)            

chr4 10020615 SLC2A9: c.A233G/p.V78A A 62(1.000) 559(0.998) 575(0.998) — 0.7391 0.97 0.9841 0.9761 rs907584363

      G 0(0.000) 1(0.002) 1(0.002)     0.06 ~ 15.58      

      A/A 31(1.000) 279(0.996) 287(0.997)   0.7389   0.9841    

      A/G 0(0.000) 1(0.004) 1(0.003)            

chr4 10020618 SLC2A9: c.A230C/p.V77G A 62(1.000) 560(1.000) 575(0.998) — — — 0.324 1 rs183263293

      C 0(0.000) 0(0.000) 1(0.002)            

      A/A 31(1.000) 280(1.000) 287(0.997)   —   0.3237    

      A/C 0(0.000) 0(0.000) 1(0.003)            

chr4 10022981 SLC2A9: c.C73T/p.G25R C 35(0.565) 277(0.495) 288(0.500) 0.76 0.2964 0.30 0.8567 0.9064 rs2276961

      T 27(0.435) 283(0.505) 288(0.500) 0.45 ~ 1.28   0.78 ~ 1.24      

      C/C 11(0.355) 69(0.246) 63(0.219)   0.4227   0.2839    

      C/T 13(0.419) 139(0.496) 162(0.562)            

      T/T 7(0.226) 72(0.257) 63(0.219)            

chr4 10022992 SLC2A9: c.G62A/p.T21I G 61(0.984) 560(1.000) 576(1.000) — 0.0026 — — 1 rs748372830

      A 1(0.016) 0(0.000) 0(0.000)   　 　 　 　  

      A/G 1(0.032) 0(0.000) 0(0.000)   0.0026 　 — 　  

      G/G 30(0.968) 280(1.000) 288(1.000)   　 　 　 　  

chr4 10023016 SLC2A9: c.C38T/p.G13D C 61(0.984) 560(1.000) 576(1.000) — 0.0026 — — 1 Novel

      T 1(0.016) 0(0.000) 0(0.000)   　 　 　 　  

      C/C 30(0.968) 280(1.000) 288(1.000)   0.0026 　 — 　  

      C/T 1(0.032) 0(0.000) 0(0.000)   　 　 　 　  

chr4 10027542 SLC2A9: c.C49T/p.A17T a C 58(0.935) 519(0.927) 533(0.925) 0.87 0.8019 1.02 0.9262 0.6591 rs6820230

      T 4(0.065) 41(0.073) 43(0.075) 0.30 ~ 2.52   0.65 ~ 1.59      

      C/C 27(0.871) 240(0.857) 246(0.854)   0.9333   0.9943    

      C/T 4(0.129) 39(0.139) 41(0.142)            

      T/T 0(0.000) 1(0.004) 1(0.003)            

chr11 64359297 SLC22A12: c.G269A/p.
R90H

G 62(1.000) 558(0.996) 576(1.000) — 0.6374 — 0.1512 0.9522 rs121907896

      A 0(0.000) 2(0.004) 0(0.000)            

      G/G 31(1.000) 278(0.993) 288(1.000)   0.6369   0.1508    

      G/A 0(0.000) 2(0.007) 0(0.000)            

chr11 64360303 SLC22A12: c.A455G/p.
Y152C

A 62(1.000) 559(0.998) 576(1.000) — 0.7391 — 0.3103 0.9761 Novel

      G 0(0.000) 1(0.002) 0(0.000)            

(Continues)



6 of 14 |   ZHOU et al.

2.4 | Variant calling and quality control
Sequence reads were demultiplexed according to each known 
amplicon start and end sequence that allowed no base mis-
match. Sequence reads were clipped to remove adapters by 

Trimmomatic v 0.30. Clipped sequence reads were aligned to 
the human genome 19 (hg19) for SLC2A9 (NC_000004.11, 
region: 9827848…10041872) and SLC22A12 (NC_000011.9, 
region: 64358113…64369825) using maximal exact matches 
command of BWA and BAM file was generated using 

CHR BP Variants Allele and genotype (1) (2) (3) (1) vs. (2) OR (1) vs. (2) p (3) vs. (2) OR (3) vs. (2) p HWE in (2) Novel or not

      A/A 31(1.000) 279(0.996) 288(1.000)   0.7389   0.31    

      A/G 0(0.000) 1(0.004) 0(0.000)            

chr11 64360355 SLC22A12: c.506 + 1G>A G 62(1.000) 560(1.000) 575(0.998) — — — 0.324 1 rs58174038

      A 0(0.000) 0(0.000) 1(0.002)            

      G/G 31(1.000) 280(1.000) 287(0.997)   —   0.324    

      G/A 0(0.000) 0(0.000) 1(0.003)            

chr11 64361134 SLC22A12: c.G689A/p.
R230Q

G 62(1.000) 559(0.998) 576(1.000) — 0.7391 — 0.3103 0.9761 rs759297223

      A 0(0.000) 1(0.002) 0(0.000)            

      G/G 31(1.000) 279(0.996) 288(1.000)   0.7389   0.3101    

      G/A 0(0.000) 1(0.004) 0(0.000)            

chr11 64361219 SLC22A12: c.G774A/p.
W258X

G 62(1.000) 559(0.998) 576(1.000) — 0.7391 — 0.3103 0.9761 rs121907892

      A 0(0.000) 1(0.002) 0(0.000)            

      G/G 31(1.000) 279(0.996) 288(1.000)   0.7389   0.3101    

      G/A 0(0.000) 1(0.004) 0(0.000)            

chr11 64367925 SLC22A12: c.G1372A/p.
E458K

G 60(0.968) 560(1.000) 576(1.000) — 2.11E−05 — — 1 rs747742344

      A 2(0.032) 0(0.000) 0(0.000)            

      G/G 30(0.968) 280(1.000) 288(1.000)   0.0026   —    

      G/A 1(0.032) 0(0.000) 0(0.000)            

chr11 64359177 SLC22A12: c.149delG/p.
W50fs

G 60(0.968) 560(1.000) 576(1.000) — 2.11E−05 — — 1 rs752156476

      — 2(0.032) 0(0.000) 0(0.000)            

      G/G 29(0.935) 280(1.000) 288(1.000) 　 2.05E−05 　 —    

      G/— 2(0.065) 0(0.000) 0(0.000) 　 　 　 　 　  

chr11 64367222 SLC22A12: c.A1145T/p.
Q382L

A 61(0.984) 560(1.000) 576(1.000) — 0.0026 — — 1 rs765990518

      T 1(0.016) 0(0.000) 0(0.000)   　 　 　 　  

      A/A 30(0.968) 280(1.000) 288(1.000)   0.0026 　 — 　  

      A/T 1(0.032) 0(0.000) 0(0.000)   　 　 　 　  

chr11 64369000 SLC22A12: c.G1639C/p.
V547L

G 61(0.984) 560(1.000) 576(1.000) — 0.0026 — — 1 Novel

      C 1(0.016) 0(0.000) 0(0.000)   　 　 　 　  

      C/G 1(0.032) 0(0.000) 0(0.000)   0.0026 　 — 　  

      G/G 30(0.968) 280(1.000) 288(1.000)   　 　   　  

Note: BP, base position; CHR, chromosome; HWE, Hardy‐Weinberg equilibrium; OR, odds ratio; “—” means uncalculated; p < 0.003 as statistical significance and  
significant p‐values in bold. BP was determined using reference sequences of SLC2A9 (NC_000004.11, region: 9827848…10041872) and SLC22A12 (NC_000011.9,  
region: 64358113…64369825) and variants were expressed in two forms of nucleotide change and amino acid change according to reference sequences of SLC2A9  
(NM_020041.3; NP_064425.2) and SLC22A12 (NM_144585.4; NP_653186.2).
*Denotes the variant annotated by SLC2A9 (NM_001001290.1; NP_001001290.1). For each variant, the allele in the first line was the reference allele and the second  
line was the altered allele that the reported OR correlates with. 

T A B L E  2  (Continued)
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SAMtools. Indel realignment and base quality recalibration 
were implemented using IndelRealigner and BQSR included 
in the Genome Analysis Toolkit (GATK). Variants including 
single nucleotide polymorphisms and short insertions and de-
letions (Indels) were called by GATK HaplotypeCaller and 

were annotated with Annovar. To avoid false positives in the 
best way, we applied hard filtration with reads depth >100, 
mapping quality >30, base quality >30.

Variants were expressed in two forms of nucleotide chan-
geand amino acid change according to reference sequences 

CHR BP Variants Allele and genotype (1) (2) (3) (1) vs. (2) OR (1) vs. (2) p (3) vs. (2) OR (3) vs. (2) p HWE in (2) Novel or not

      A/A 31(1.000) 279(0.996) 288(1.000)   0.7389   0.31    

      A/G 0(0.000) 1(0.004) 0(0.000)            

chr11 64360355 SLC22A12: c.506 + 1G>A G 62(1.000) 560(1.000) 575(0.998) — — — 0.324 1 rs58174038

      A 0(0.000) 0(0.000) 1(0.002)            

      G/G 31(1.000) 280(1.000) 287(0.997)   —   0.324    

      G/A 0(0.000) 0(0.000) 1(0.003)            

chr11 64361134 SLC22A12: c.G689A/p.
R230Q

G 62(1.000) 559(0.998) 576(1.000) — 0.7391 — 0.3103 0.9761 rs759297223

      A 0(0.000) 1(0.002) 0(0.000)            

      G/G 31(1.000) 279(0.996) 288(1.000)   0.7389   0.3101    

      G/A 0(0.000) 1(0.004) 0(0.000)            

chr11 64361219 SLC22A12: c.G774A/p.
W258X

G 62(1.000) 559(0.998) 576(1.000) — 0.7391 — 0.3103 0.9761 rs121907892

      A 0(0.000) 1(0.002) 0(0.000)            

      G/G 31(1.000) 279(0.996) 288(1.000)   0.7389   0.3101    

      G/A 0(0.000) 1(0.004) 0(0.000)            

chr11 64367925 SLC22A12: c.G1372A/p.
E458K

G 60(0.968) 560(1.000) 576(1.000) — 2.11E−05 — — 1 rs747742344

      A 2(0.032) 0(0.000) 0(0.000)            

      G/G 30(0.968) 280(1.000) 288(1.000)   0.0026   —    

      G/A 1(0.032) 0(0.000) 0(0.000)            

chr11 64359177 SLC22A12: c.149delG/p.
W50fs

G 60(0.968) 560(1.000) 576(1.000) — 2.11E−05 — — 1 rs752156476

      — 2(0.032) 0(0.000) 0(0.000)            

      G/G 29(0.935) 280(1.000) 288(1.000) 　 2.05E−05 　 —    

      G/— 2(0.065) 0(0.000) 0(0.000) 　 　 　 　 　  

chr11 64367222 SLC22A12: c.A1145T/p.
Q382L

A 61(0.984) 560(1.000) 576(1.000) — 0.0026 — — 1 rs765990518

      T 1(0.016) 0(0.000) 0(0.000)   　 　 　 　  

      A/A 30(0.968) 280(1.000) 288(1.000)   0.0026 　 — 　  

      A/T 1(0.032) 0(0.000) 0(0.000)   　 　 　 　  

chr11 64369000 SLC22A12: c.G1639C/p.
V547L

G 61(0.984) 560(1.000) 576(1.000) — 0.0026 — — 1 Novel

      C 1(0.016) 0(0.000) 0(0.000)   　 　 　 　  

      C/G 1(0.032) 0(0.000) 0(0.000)   0.0026 　 — 　  

      G/G 30(0.968) 280(1.000) 288(1.000)   　 　   　  

Note: BP, base position; CHR, chromosome; HWE, Hardy‐Weinberg equilibrium; OR, odds ratio; “—” means uncalculated; p < 0.003 as statistical significance and  
significant p‐values in bold. BP was determined using reference sequences of SLC2A9 (NC_000004.11, region: 9827848…10041872) and SLC22A12 (NC_000011.9,  
region: 64358113…64369825) and variants were expressed in two forms of nucleotide change and amino acid change according to reference sequences of SLC2A9  
(NM_020041.3; NP_064425.2) and SLC22A12 (NM_144585.4; NP_653186.2).
*Denotes the variant annotated by SLC2A9 (NM_001001290.1; NP_001001290.1). For each variant, the allele in the first line was the reference allele and the second  
line was the altered allele that the reported OR correlates with. 

T A B L E  2  (Continued)
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of SLC2A9 (NM_020041.3; NP_064425.2) and SLC22A12 
(NM_144585.4; NP_653186.2).

2.5 | Statistical analysis
Differences in demographic and clinical indices between pair-
wise groups were estimated using independent t test (quantita-
tive traits) or chi‐square (χ2) test (qualitative traits) with SPSS 
19.0. To assess the group representation, Hardy‐Weinberg 

equilibrium (HWE) was conducted in the normal controls. The 
χ2 test was used for association analyses with effect actions in-
dicated by odds ratios (ORs) with 95% confidence intervals. 
Statistical analyses were performed using free‐charge SHEsis 
online platform (http://shesi splus.bio-x.cn/) (Shi & He, 2005). 
Haploview 4.2 was used to analyze pairwise linkage disequi-
librium (LD) and haplotype distributions for the common vari-
ants. Two‐tailed p value of < 0.05 was considered statistically 
significant. The Bonferroni correction method was used for 

F I G U R E  2  Pairwise linkage disequilibrium (LD) plot for the common variants. (a) demonstrates the strength of the pairwise LD based on 
D′ in SLC2A9, and numbers represent the value of D′ expressed as a percentage. The blanks represent D′ = 1. (b) demonstrates the strength of the 
pairwise LD based on D’ in SLC22A12, and numbers represent the value of D′ expressed as a percentage. The blanks represent D′ = 1

T A B L E  3  The hypouricemic individuals with rare mutations and the normal controls with reported hypouricemia causative mutations

Individuals Gender SUA (mg/dl) Variants Variants status Novel or not

QQY23 Male 0.63 SLC2A9: c.G62A/p.T21I Heterozygous rs748372830

17QD5230 Female 1.57 SLC2A9: c.C38T/p.G13D Heterozygous Novel

QLY630 Male 1.92 SLC22A12: c.149delG/p.
W50fs

Heterozygous rs752156476

N2401 Female 1.93 SLC22A12: c.149delG/p.
W50fs

Heterozygous rs752156476

17QD3912 Female 1.77 SLC22A12: c.A1145T/p.
Q382L

Compound heterozygous rs765990518

SLC22A12: c.G1639C/p.
V547L

Novel

17QD2146 Male 0.70 SLC22A12: c.G1372A/p.
E458K

Homozygous rs747742344

QLY2219 Male 5.63 SLC22A12: c.G269A/p.R90H Heterozygous rs121907896

ZY26‐183 Female 4.55 SLC22A12: c.G269A/p.R90H Heterozygous rs121907896

QLY2255 Male 5.17 SLC22A12: c.G774A/p.
W258X

Heterozygous rs121907892

Note: Variants were expressed in two forms of nucleotide change and amino acid change according to reference sequences of SLC2A9 (NM_020041.3; NP_064425.2) 
and SLC22A12 (NM_144585.4; NP_653186.2).
To convert SUA in mg/dl to μmol/l, multiply by 60.
Abbreviation: SUA, serum uric acid.

http://shesisplus.bio-x.cn/
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multiple testing, which would decrease the significance thresh-
old (=0.05 divided by numbers of variants to be analyzed).

3 |  RESULTS

3.1 | Clinical characteristics of the study 
participants
The mean SUA values among hypouricemia, normal controls 
and HUA were 1.18 mg/dl, 4.47 mg/dl and 7.93 mg/dl, respec-
tively. No significant difference was observed with respect to 
gender ratio, age, waist circumference and fasting glucose be-
tween pairwise groups (Table 1). Other demographic and clini-
cal indices with significant difference are also summarized in 
Table 1. Next, we arranged the hypouricemia samples accord-
ing to SUA values. Two SUA sections were concentrated in 
hypouricemia frequency with the first at 0.3–1.0 mg/dl and the 
second at 1.7–2.0 mg/dl (Figure 1).

3.2 | Variants identification
A total of 84 high‐quality variants were called in the three 
cohorts including 17 nonsynonymous (15 missense, one 
frameshift and one stopgain), one splicing region variant, 18 
synonymous mutations, 31 intron variants, three upstream or 
downstream variants and 14 UTR variants (Data S2). In total, 
41 common variants (minor allele frequency (MAF) >0.01) 
and 43 rare variants (MAF <0.01) were identified. On the 
whole, 17 were newly reported (Data S2).

3.3 | Association analyses of the variants 
with hypouricemia and HUA
Seeking for potential hypouricemia causative mutations, we 
selected the 17 nonsynonymous mutations and the one splic-
ing region variant and performed comparative analyses to 
confirm the disease susceptibility (Table 2). Thus, the sig-
nificance threshold should be a p value of 0.003 (=0.05/18). 
Among them, common variant rs3733591 failed to reach 
HWE with the p value being 0.0002 in the healthy controls 
and then were excluded from analysis. For the reported com-
mon variant rs16890979, T allele conferred substantial risk 
for hypouricemia although the allelic association just showed 
a marginal effect (OR  =  3.5085, p  =  0.0532). However, 
its genotypic difference reached nominal significance 
(p  =  0.0107). These associations did not reach statistical 
significance in terms of Bonferroni correction. Comparing 
the HUA cohort with the normal controls, rs16890979 T al-
lele conferred no significant effect on HUA susceptibility 
(OR = 0.7263, p = 0.5546). For the other reported common 
variants rs2280205, rs6820230 and rs2276961, the effects on 
hypouricemia or HUA were not identified in our datasets. 
Pairwise LD analyses indicated that the common variants 

existed in one haplotype block in SLC2A9 and SLC22A12, 
respectively (Figure 2) and no significant haplotype distribu-
tion was found (data not shown).

We then focused on the rare mutations. Six single nucle-
otide variations (SNVs) SLC2A9: p.T21I, SLC2A9: p.G13D, 
SLC22A12: p.W50fs, SLC22A12: p.Q382L, SLC22A12: 
p.V547L and SLC22A12: p.E458K occurred in six hypouri-
cemia subjects (Table 3). Patient 1 encoded with QQY23 
had SUA of 0.63 mg/dl and carried a heterozygous SLC2A9: 
p.T21I. Patient 2 encoded with 17QD5230 had SUA of 
1.57  mg/dl and carried a heterozygous SLC2A9: p.G13D 
which was first reported in this study. Patient 3 and 4 en-
coded with QLY630 and N2401 had comparable SUA level 
of ≈1.9  mg/dl and carried the same heterozygous mutant 
SLC22A12: p.W50fs. Patient 5 encoded with 17QD3912 
had SUA of 1.77 mg/dl and carried compound heterozygous 
SLC22A12: p.Q382L and SLC22A12: p.V547L. Patient 6 en-
coded with 17QD2146 had SUA of 0.7  mg/dl and carried 
a homozygous SLC22A12: p.E458K. For these six muta-
tions, both the allelic and genotypic distributions differed 
significantly between the hypouricemia and normal controls 
(p < 0.003). All these mutations did not appear in normal con-
trols or HUA cohort and had no significant effects on HUA 
susceptibility (p  >  0.003). The remaining rare mutations 
were sparsely detected in normal control or HUA subject and 
presented no significance (p > 0.003). Further, we performed 
gene‐based association analyses in which individuals car-
rying any rare mutation were set as gene mutation carriers. 
The ratio of rare mutation carriers in the hypouricemia group 
was significantly higher than that in normal controls (19.3% 
vs. 2.14%, OR = 10.96, p = 3.19E‐7), while aggregated rare 
mutations conferred no significant effects on HUA suscepti-
bility (0.69% vs. 2.14%, OR = 0.32, p = 0.14). Unexpectedly, 
two previously reported hypouricemia causative mutations 
SLC22A12: p.R90H and SLC22A12: p.W258X were found 
in three normal controls rather than in the hypouricemia in-
dividual (Table 3).

Separate analyses for male and female are displayed 
in Table S1 and Table S2. p.T21I inSLC2A9, p.W50fs and 
p.E458K in SLC22A12 were significantly associated with 
hypouricemia in male samples whereas p.G13D inSLC2A9, 
p.W50fs, p.Q382L and p.V547L in SLC22A12 were signifi-
cantly associated with hypouricemia in females.

3.4 | Pathogenicity predictions 
for the nonsynonymous mutations
Annotations by Annovar were conducted to evaluate the vari-
ant pathogenicity. As shown in Data S2, the six mutations 
susceptible to hypouricmia were not completely consistent 
with the predicted pathogenicity by software. For instance, 
SLC22A12: p.E458K and SLC22A12: p.Q382L conformed 
to “deleterious” as predicted by the software while SLC2A9: 
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p.T21I, SLC2A9: p.G13D and SLC22A12: p.V547L were 
predicted to be benign. Additionally, we predicted the con-
served domains of the two urate transporters by pasting the 
whole protein sequences to NCBI (https ://www.ncbi.nlm.
nih.gov/Struc ture/cdd/wrpsb.cgi). Q382 in SLC22A12 was 
conserved while other loci were not. SLC22A12: p.W50fs 
was a truncated protein with premature codon termination at 
amino acid 64 and deemed as a loss‐of‐function mutation (Li 
et al., 2013).

4 |  DISCUSSION

The main findings in this study was that six rare SNVs p.T21I 
and p.G13D in SLC2A9, p.W50fs, p.Q382L, p.V547L and 
p.E458K in SLC22A12, occurred in six hypouricemia sub-
jects. Both single locus and gene‐based association analyses 
further corroborated the hypouricemia susceptibility from a 
statistical perspective. Among them, SLC2A9: p.G13D and 
SLC22A12: p.V547L were newly reported.

To date, most reported hRHUC patients were of Japanese 
origin and harbored stopgain mutation SLC22A12: p.W258X, 
among which the homozygous carriers had much higher 
risk for developing acute kidney events (Ichida et al., 2004; 
Zhou et al., 2018). hRHUC patients were reported less in 
Korea but a majority carried SLC22A12: p.W258X as well 
(Zhou et al., 2018). Intriguingly, people with heterozygous 
W258X mutation had SUA measurement ranging from con-
tent to hypouricemia criterion (Ichida et al., 2004) to normal 
range (Iwai et al., 2004; Taniguchi et al., 2005) and ~3% of 
alleles occurred with this mutation in 1875 subjects from 
an epidemiological survey which represented the general 
population in Japan (Iwai et al., 2004), suggesting the harm-
lessness of the heterozygote to the general population. Not 
surprisingly, the SLC22A12: p.W258X mutation showed a 
protective effect against gout incidence in comparison with 
healthy controls (Taniguchi et al., 2005). As in Caucasians, 
Israel–Arab, Iraqi jews (Zhou et al., 2018), Pakistan (Jeannin 
et al., 2014) and India (Chakraborty & Sural, 2013), scattered 
hypouricemia cases have also been reported in China which 
displayed dispersed mutation spectrum. For example, homo-
zygous SLC22A12: p.R90H was found in two brothers with 
hypouricemia (Yan, Cheng, Chen, & Lin, 2010), compound 
heterozygous SLC22A12: p.P78L plus p.Q382L (Lam et al., 
2008), homozygous SLC2A9: p.W238X (Shen et al., 2014), 
homozygous splicing mutation c.1215+1 G>A in SLC2A9 
(Mou, Jiang, & Hu, 2015), and compound heterozygous 
SLC22A12: p.R90H plus p.M430fsX466 (Zhou et al., 2018) 
were found in each hypouricemia patient, respectively. In an-
other literature, three hypouricemia siblings and their normal 
father had heterozygous SLC22A12: p.A51fsX64 (Li et al., 
2013). In fact, two siblings were within low normal range 
with SUA being 2.6 mg/dl and 2.0 mg/dl, respectively. In the 

second family, the hypouricemia patient had compound het-
erozygous SLC22A12: p.T217M plus SLC2A9: p.P516T but 
his affected mother only had one heterozygous SLC22A12: 
p.T217M (Li et al., 2013). To summarize, SLC2A9: p.R90H 
allele accounted for 27.8% (5/9*2) among the hypouricemia 
patients which was much greater than that in Japan and Korea 
(Zhou et al., 2018), while W258X was not detected in any 
hypouricemia patient in Chinese samples. The SLC22A12 
mutants were of major subtype responsibility for hRHUC, 
which was identical in varied ethnicities (Claverie‐Martin et 
al., 2018; Zhou et al., 2018). The high incidence of hRHUC1 
(OMIM #220150) has been reported in the Asian region and 
is attributed to the high frequency of the p.W258X (2.30%–
2.37%) and p.R90H (0.40%) in SLC22A12 among Japanese 
(Iwai et al., 2004; Taniguchi et al., 2005) and general Korean 
populations (Lee et al., 2008), which is indicative of a founder 
mutation in the Asian continent. As for the Roman (the larg-
est and the most widespread ethnic minority of Europe), the 
high frequency of SLC22A12 variants causing hRHUC1 
may be due to the high frequency of the p.L415_G417del 
(1.87%–1.92%) and p.T467M (5.56%) dysfunctional variants 
in the Roma general population (Gabrikova, Bernasovska, 
Sokolova, & Stiburkova, 2015; Stiburkova et al., 2016). In 
this study, we still did not detect W258X mutation in hy-
pouricemia patients, but one heterozygote occurrence was 
observed in one normal person unexpectedly. The prevalence 
of W258X mutation was 0.18% (1/280*2) in our normal co-
hort which was much lower than that in the Japanese cohort 
(Iwai et al., 2004; Taniguchi et al., 2005), suggesting the 
genetic heterogeneity between the two populations. In this 
study, the SLC22A12: p.R90H was also not detected in any 
hypouricemia subject, but was detected in heterozygote oc-
currences in two normal controls.

Notably, only six hypouricemia subjects were identified 
with rare nonsynonymous mutations, of which the detection 
rate (6/31) was much lower than other studies. For example, 
30/32 patients were detected with homozygous, compound 
heterozygous or heterozygous mutations in SLC22A12 in one 
single cohort (Ichida et al., 2004). Our hypouricemia cohort 
was selected from a community‐based database where the 
biochemical values were examined once in field survey. A 
few hypouricemia samples may be temporary or secondary to 
other diseases rather than persistent or primary hypouricemia. 
Some hypouricemia samples may be hereditary xanthinuria 
resulting from inherited deficiency of xanthine oxidorectase 
and aldehyde oxidase (Mraz et al., 2015), proportion would 
not be substantial in terms of rare report in Chinese (Zhou et 
al., 2015). Thus, we have reason to justify that most hypouri-
cemia samples can be diagnosed as hRHUC. The primary 
explanation for such a low detection rate should be that the 
genetic variation for hRHUC may not only locate in these two 
genes in the Chinese population since our sequence depths on 
the exon regions of the two genes were yielded 1,035‐fold on 

https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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average which was enough to discriminate germline muta-
tions. Therefore, further whole‐genome studies to reveal more 
causal genes and mutations are suggested. In sex‐specific 
analysis, some of variants failed to reach statistical signifi-
cance. Sample size might be one of the major reasons for the 
negative results. Besides, noting that some previously iden-
tified hypouricemia causal variants were found in normouri-
cemia (Iwai et al., 2004; Taniguchi et al., 2005) as with ours, 
that the six SNVs are not necessarily causal of hypouricemia 
could not be excluded and it is possible that at least some of 
the six SNVs might be false positives. A larger sample size 
and further evidence from functional experiments would be 
necessary to replicate the associations and to confirm their 
urate transportation activity and pathophysiological role on 
hypouricemia.

For the common variant rs3733591, the C allele had been 
found to increase risk of higher SUA, gout and tophi (Hollis‐
Moffatt et al., 2011; Tu et al., 2010). However, in this study, 
rs3733591 did not reach HWE and was excluded from asso-
ciation analysis. For the common variant rs16890979, C al-
lele was associated with higher SUA and gout risk (Dehghan 
et al., 2008). The present study confirmed the result from 
another aspect: T allele conferred substantial risk for hy-
pouricemia (OR >1) although the association only showed 
a marginal strength. Considering the relatively small sample 
size in this study, the negative result can be explained by the 
insufficient statistical power. For the other widely reported 
common variants rs2280205, rs6820230 and rs2276961, no 
significant effect on hypouricemia or HUA was identified in 
our samples, which was in accordance with previous reports 
(Hurba et al., 2014; Xing et al., 2015). As for the rare vari-
ants, both single locus and aggregation analysis confirmed 
increased risk for hypouricemia although they had no signif-
icant protection against HUA. These results imply that rare 
variants have greater impact on urate transportation and may 
serve as potential targets for urate transporter blocker, which 
is substantiated by the recent whole‐exome sequencing asso-
ciation studies (Tin et al., 2018).

Additionally, we arranged hypouricemia samples accord-
ing to SUA value and two SUA sections were concentrated 
with the first at 0.3–1.0 mg/dl and the second at 1.7–2.0 mg/
dl. We suspect that those with lower SUA value more likely 
carry homozygous mutations or compound heterozygous 
mutations and those with relatively higher SUA level may 
result from heterozygous mutations. However, the degree 
of hypouricemia was not entirely consistent with mutation 
type as suspected. For example, patient 1 encoded with 
QQY23 had SUA of 0.63 mg/dl but carried a heterozygous 
SLC2A9: p.Thr21Ile. Patient 5 encoded with 17QD3912 
had SUA of 1.77 mg/dl but carried compound heterozygous 
SLC22A12: p.Gln382Leu and SLC22A12: p.Val547Leu. 
Patient 6 encoded with 17QD2146 had SUA of 0.7  mg/dl 
and carried a homozygous SLC22A12: p.Glu458Lys, which 

was in line with our assumptions. SLC2A9: p.Gly13Asp and 
SLC22A12: p.Val547Leu were first reported but tended to 
be nonpathogenic by software prediction. As for SLC22A12: 
p.Gln382Leu and SLC22A12: p.Glu458Lys, both mutations 
were predicted to be pathogenic. SLC22A12: p.Gln382Leu 
was recognized as conservative as well as likely pathogenic 
in ClinVar, which was in accordance with functional char-
acterization (Wakida et al., 2005). Besides, the phenotypic 
severity of hRHUC is not necessarily correlated with func-
tion status of the mutants (Mancikova et al., 2016) and some 
patients even occur nonrenal complications such as rhab-
domyolysis (Chakraborty & Sural, 2013) and neurological 
symptoms of posterior reversible encephalopathy syndrome 
(Fujinaga et al., 2013; Mou et al., 2015; Shima et al., 2011), 
which altogether implies a complexity of genetic involve-
ment and pathophysiological process underlying the disease 
spectrum. Primary hypouricemia is a common characteristic 
of xanthine dehydrogenase (XDH) deficiency (Xanthinuria 
1, OMIM #278300) and reduced synthesis of molybdenum 
cofactor (Xanthinuria 2, OMIM #603592) and hRHUC1 
(OMIM #220150) and hRHUC2 (OMIM #612076). 
However, in some of these patients neurological symptoms 
were not observed, including cases with extremely low 
SUA values near 0 (Stiburkova, Ichida, & Sebesta, 2011; 
Stiburkova et al., 2012; Stiburkova, Pavelcova, Petru, & 
Krijt, 2018). These discrepant reports suggest that the pro-
tective systems involving plasma uric acid may not be es-
sential. The relationship between SUA and neuroprotective 
action remains a debated issue which needs more well‐de-
signed prospective studies and functional research in the fu-
ture. Unluckily, information on past medical history could 
not be obtained from this database to estimate the relation-
ship between hypourcemia and other phenotypes.

In conclusion, our amplicon targeted sequencing and sta-
tistical analyses identified six rare nonsynonymous variants 
associated with hypouricemia in the Han Chinese population. 
Functional study together with comprehensive phenotype‐
genotype research should be necessary to reveal the exact in-
volvement of the variants in urate transportation and disease 
spectrum. Whole‐genome screen to reveal the new causal 
genes and mutations for hRHUC in Han Chinese samples are 
suggested.
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